Involvement of fission yeast Pdc2 in RNA degradation and P-body function

6Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

In this study we identified Pdc2, the fission yeast ortholog of human Pat1b protein, which forms a complex with Lsm1-7 and plays a role in coupling deadenylation and decapping. The involvement of Pdc2 in RNA degradation and P-body function was also determined. We found that Pdc2 interacts with Dcp2 and is required for decapping in vivo. Although not absolutely essential for P-body assembly, overexpression of Pdc2 enhanced P-body formation even in the absence of Pdc1, the fission yeast functional homolog of human Edc4 protein, indicating that Pdc2 also plays a role in P-body formation. Intriguingly, in the absence of Pdc2, Lsm1 was found to accumulate in the nucleus, suggesting that Pdc2 shuttling between nucleus and cytoplasm plays a role in decreasing the nuclear concentration of Lsm1 to increase Lsm1 in the cytoplasm. Furthermore, unlike other components of P-bodies, the deadenylase Ccr4 did not accumulate in P-bodies in cells growing under favorable conditions and was only recruited to P-bodies after deprivation of glucose in a Pdc2-Lsm1-dependent manner, indicating a function of Pdc2 in cellular response to environmental stress. In supporting this idea, pdc2 mutants are defective in recovery from glucose starvation with a much longer time to re-enter the cell cycle. In keeping with the notion that Pat1 is a nucleocytoplasmic protein, functioning also in the nucleus, we found that Pdc2 physically and genetically interacts with the nuclear 5′ -3′ exonuclease Dhp1. A function of Pdc2-Lsm1, in concert with Dhp1, regulating RNA by promoting its decapping/destruction in the nucleus was suggested.

Author supplied keywords

Cite

CITATION STYLE

APA

Wang, C. Y., Wang, Y. T., Hsiao, W. Y., & Wang, S. W. (2017). Involvement of fission yeast Pdc2 in RNA degradation and P-body function. RNA, 23(4), 493–503. https://doi.org/10.1261/rna.059766.116

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free