Sea otters (Enhydra lutris) and wolves (Canis lupus) are two apex predators with strong and cascading effects on ecosystem structure and function. After decades of recovery from near extirpation, their ranges now overlap, allowing sea otters and wolves to interact for the first time in the scientific record. We intensively studied wolves during 2015 to 2021 in an island system colonized by sea otters in the 2000s and by wolves in 2013. After wolf colonization, we quantified shifts in foraging behavior with DNA metabarcoding of 689 wolf scats and stable isotope analyses, both revealing a dietary switch from Sitka black-tailed deer (Odocoileus hemionus), the terrestrial in situ primary prey, to sea otters. Here we show an unexpected result of the reintroduction and restoration of sea otters, which became an abundant marine subsidy for wolves following population recovery. The availability of sea otters allowed wolves to persist and continue to reproduce, subsequently nearly eliminating deer. Genotypes from 390 wolf scats and telemetry data from 13 wolves confirmed island fidelity constituting one of the highest known wolf population densities and upending standardly accepted wolf density predictions based on ungulate abundance. Whereas marine subsidies in other systems are generally derived from lower trophic levels, here an apex nearshore predator became a key prey species and linked nearshore and terrestrial food webs in a recently deglaciated and rapidly changing ecosystem. These results underscore that species restoration may serve as an unanticipated nutrient pathway for recipient ecosystems even resulting in cross-boundary subsidy cascades.
CITATION STYLE
Roffler, G. H., Eriksson, C. E., Allen, J. M., & Levi, T. (2023). Recovery of a marine keystone predator transforms terrestrial predator–prey dynamics. Proceedings of the National Academy of Sciences of the United States of America, 120(5). https://doi.org/10.1073/pnas.2209037120
Mendeley helps you to discover research relevant for your work.