Binarized neural architecture search

13Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.

Abstract

Neural architecture search (NAS) can have a significant impact in computer vision by automatically designing optimal neural network architectures for various tasks. A variant, binarized neural architecture search (BNAS), with a search space of binarized convolutions, can produce extremely compressed models. Unfortunately, this area remains largely unexplored. BNAS is more challenging than NAS due to the learning inefficiency caused by optimization requirements and the huge architecture space. To address these issues, we introduce channel sampling and operation space reduction into a differentiable NAS to significantly reduce the cost of searching. This is accomplished through a performancebased strategy used to abandon less potential operations. Two optimization methods for binarized neural networks are used to validate the effectiveness of our BNAS. Extensive experiments demonstrate that the proposed BNAS achieves a performance comparable to NAS on both CIFAR and ImageNet databases. An accuracy of 96.53% vs. 97.22% is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a 40% faster search than the state-of-the-art PCDARTS.

Cite

CITATION STYLE

APA

Chen, H., Zhuo, L., Zhang, B., Zheng, X., Liu, J., Doermann, D., & Ji, R. (2020). Binarized neural architecture search. In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence (pp. 10526–10533). AAAI press. https://doi.org/10.1609/aaai.v34i07.6624

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free