Intra-operative target pose estimation is fundamental in minimally invasive surgery (MIS) to guiding surgical robots. This task can be fulfilled by the 2-D/3-D rigid registration, which aligns the anatomical structures between intra-operative 2-D fluoroscopy and the pre-operative 3-D computed tomography (CT) with annotated target information. Although this technique has been researched for decades, it is still challenging to achieve accuracy, robustness and efficiency simultaneously. In this paper, a novel orthogonal-view 2-D/3-D rigid registration framework is proposed which combines the dense reconstruction based on deep learning and the GPU-accelerated 3-D/3-D rigid registration. First, we employ the X2CT-GAN to reconstruct a target CT from two orthogonal fluoroscopy images. After that, the generated target CT and pre-operative CT are input into the 3-D/3-D rigid registration part, which potentially needs a few iterations to converge the global optima. For further efficiency improvement, we make the 3-D/3-D registration algorithm parallel and apply a GPU to accelerate this part. For evaluation, a novel tool is employed to preprocess the public head CT dataset CQ500 and a CT-DRR dataset is presented as the benchmark. The proposed method achieves 1.65 ± 1.41 mm in mean target registration error(mTRE), 20% in the gross failure rate(GFR) and 1.8 s in running time. Our method outperforms the state-of-the-art methods in most test cases. It is promising to apply the proposed method in localization and nano manipulation of micro surgical robot for highly precise MIS.
CITATION STYLE
An, Z., Ma, H., Liu, L., Wang, Y., Lu, H., Zhou, C., … Hu, J. (2021). Robust orthogonal-view 2-d/3-d rigid registration for minimally invasive surgery. Micromachines, 12(7). https://doi.org/10.3390/mi12070844
Mendeley helps you to discover research relevant for your work.