Multi-parametric relationships between PAM measurements and carbon incorporation, an in situ approach

32Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

Abstract

Primary production (PP) in the English Channel was measured using 13C uptake and compared to the electron transport rate (ETR) measured using PAM (pulse amplitude modulated fluorometer). The relationship between carbon incorporation (Pobs) and ETR was not linear but logarithmic. This result can be explained by alternative electron sinks at high irradiance which protect the phytoplankton from photoinhibition. A multi-parametric model was developed to estimate PP by ETR. This approach highlighted the importance of taking physicochemical parameters like incident light and nutrient concentrations into account. The variation in the ETR/Pobs ratio as a function of the light revealed different trends which were characterized by three parameters (Rmax, the maximum value of ETR/Pobs; ERmax, the light intensity at which Rmax is measured; γ the initial slope of the curve). Based on the values of these three parameters, data were divided into six groups which were highly dependent on the seasons and on the physicochemical conditions. Using the multi-parametric model which we defined by Pobs and ETR measurements at low frequencies, the high frequency measurements of ETR enabled us to estimate the primary production capacity between November 2009 and December 2010 at high temporal and spatial scales. © 2012 Napoléon, Claquin.

Cite

CITATION STYLE

APA

Napoléon, C., & Claquin, P. (2012). Multi-parametric relationships between PAM measurements and carbon incorporation, an in situ approach. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0040284

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free