SFSADE: an improved self-adaptive differential evolution algorithm with a shuffled frog-leaping strategy

12Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The differential evolution (DE) algorithm is an efficient random search algorithm based on swarm intelligence for solving optimization problems. It has the advantages of easy implementation, fast convergence, strong optimization ability and good robustness. However, the performance of DE is very sensitive to the design of different operators and the setting of control parameters. To solve these key problems, this paper proposes an improved self-adaptive differential evolution algorithm with a shuffled frog-leaping strategy (SFSADE). It innovatively incorporates the idea of the shuffled frog-leaping algorithm into DE, and at the same time, it cleverly introduces a new strategy of classification mutation, and also designs a new adaptive adjustment mechanism for control parameters. In addition, we have carried out a large number of simulation experiments on the 25 benchmark functions of CEC 2005 and two nonparametric statistical tests to comprehensively evaluate the performance of SFSADE. Finally, the results of simulation experiments and nonparametric statistical tests show that SFSADE is very effective in improving DE, and significantly improves the overall diversity of the population in the process of dynamic evolution. Compared with other advanced DE variants, its global search speed and optimization performance also has strong competitiveness.

Cite

CITATION STYLE

APA

Pan, Q., Tang, J., Wang, H., Li, H., Chen, X., & Lao, S. (2022). SFSADE: an improved self-adaptive differential evolution algorithm with a shuffled frog-leaping strategy. Artificial Intelligence Review, 55(5), 3937–3978. https://doi.org/10.1007/s10462-021-10099-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free