Background: The propensity of oligonucleotide strands to form stable duplexes with complementary sequences is fundamental to a variety of biological and biotechnological processes as various as microRNA signalling, microarray hybridization and PCR. Yet our understanding of oligonucleotide hybridization, in particular in presence of surfaces, is rather limited. Here we use oligonucleotide microarrays made in-house by optically controlled DNA synthesis to produce probe sets comprising all possible single base mismatches and base bulges for each of 20 sequence motifs under study. Results: We observe that mismatch discrimination ismostly determined by the defect position (relative to the duplex ends) as well as by the sequence context. We investigate the thermodynamics of the oligonucleotide duplexes on the basis of double-ended molecular zipper. Theoretical predictions of defect positional influence as well as long range sequence influence agree well with the experimental results. Conclusion: Molecular zipping at thermodynamic equilibrium explains the binding affinity of mismatched DNA duplexes on microarrays well. The position dependent nearest neighbor model (PDNN) can be inferred from it. Quantitative understanding of microarray experiments from first principles is in reach. © 2008 Naiser et al; licensee BioMed Central Ltd.
CITATION STYLE
Naiser, T., Kayser, J., Mai, T., Michel, W., & Ott, A. (2008). Position dependent mismatch discrimination on DNA microarrays - experiments and model. BMC Bioinformatics, 9. https://doi.org/10.1186/1471-2105-9-509
Mendeley helps you to discover research relevant for your work.