Migration of the Plastid Genome to the Nucleus in a Peridinin Dinoflagellate

  • Hackett J
  • Yoon H
  • Soares M
  • et al.
N/ACitations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Dinoflagellate algae are important primary producers and of significant ecological and economic impact be- cause of their ability to form “red tides” [1]. They are also models for evolutionary research because of an unparalleled ability to capture photosynthetic organ- elles (plastids) through endosymbiosis [2]. The nature and extent of the plastid genome in the dominant per- dinin-containing dinoflagellates remain, however, two of the most intriguing issues in plastid evolution. The plastidgenome in these taxa is reduced to single-gene minicircles [3, 4] encoding an incomplete (untilnow15) set of plastid proteins. The location of the remaining photosynthetic genes is unknown. We generated a data set of 6,480 unique expressed sequence tags (ESTs) from the toxic dinoflagellate Alexandrium ta- marense (for details, see the Experimental Procedures in the Supplemental Data) to find the missing plastid genes and to understand the impact of endosymbiosis on genome evolution. Here we identify 48 of the non- minicircle-encoded photosynthetic genes in the nuclear genome of A. tamarense, accounting for the majority of the photosystem. Fifteen genes that are always found on the plastid genome of other algae and plants have been transferred to the nucleus in A. tamarense. The plastid-targeted genes have red and green algal origins. These results highlight the unique position of dinoflagellatesas thechampions of plastid genetrans- fer to the nucleus among photosynthetic eukaryotes.

Cite

CITATION STYLE

APA

Hackett, J. D., Yoon, H. S., Soares, M. B., Bonaldo, M. F., Casavant, T. L., Scheetz, T. E., … Bhattacharya, D. (2004). Migration of the Plastid Genome to the Nucleus in a Peridinin Dinoflagellate. Current Biology, 14(3), 213–218. https://doi.org/10.1016/j.cub.2004.01.032

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free