Step-indexed relational reasoning for countable nondeterminism

12Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Programming languages with countable nondeterministic choice are computationally interesting since countable nondeterminism arises when modeling fairness for concurrent systems. Because countable choice introduces non-continuous behaviour, it is well-known that developing semantic models for programming languages with countable nondeterminism is challenging. We present a step-indexed logical relations model of a higher-order functional programming language with countable nondeterminism and demonstrate how it can be used to reason about contextually defined may-and must-equivalence. In earlier step-indexed models, the indices have been drawn from ω. Here the step-indexed relations for must-equivalence are indexed over an ordinal greater than ω. © L. Birkedal, A. Bizjak, and J. Schwinghammer.

Cite

CITATION STYLE

APA

Birkedal, L., Bizjak, A., & Schwinghammer, J. (2013). Step-indexed relational reasoning for countable nondeterminism. Logical Methods in Computer Science, 9(4). https://doi.org/10.2168/LMCS-9(4:4)2013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free