Cross Encoder-Decoder Transformer with Global-Local Visual Extractor for Medical Image Captioning

10Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Transformer-based approaches have shown good results in image captioning tasks. How-ever, current approaches have a limitation in generating text from global features of an entire image. Therefore, we propose novel methods for generating better image captioning as follows: (1) The Global-Local Visual Extractor (GLVE) to capture both global features and local features. (2) The Cross Encoder-Decoder Transformer (CEDT) for injecting multiple-level encoder features into the decoding process. GLVE extracts not only global visual features that can be obtained from an entire image, such as size of organ or bone structure, but also local visual features that can be generated from a local region, such as lesion area. Given an image, CEDT can create a detailed description of the overall features by injecting both low-level and high-level encoder outputs into the decoder. Each method contributes to performance improvement and generates a description such as organ size and bone structure. The proposed model was evaluated on the IU X-ray dataset and achieved better performance than the transformer-based baseline results, by 5.6% in BLEU score, by 0.56% in METEOR, and by 1.98% in ROUGE-L.

Cite

CITATION STYLE

APA

Lee, H., Cho, H., Park, J., Chae, J., & Kim, J. (2022). Cross Encoder-Decoder Transformer with Global-Local Visual Extractor for Medical Image Captioning. Sensors, 22(4). https://doi.org/10.3390/s22041429

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free