Imitation of human expressions based on emotion estimation by mental simulation

15Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

Humans can express their own emotion and estimate the emotional states of others during communication. This paper proposes a unified model that can estimate the emotional states of others and generate emotional self-expressions. The proposed model utilizes a multimodal restricted Boltzmann machine (RBM) - a type of stochastic neural network. RBMs can abstract latent information from input signals and reconstruct the signals from it. We use these two characteristics to rectify issues affecting previously proposed emotion models: constructing an emotional representation for estimation and generation for emotion instead of heuristic features, and actualizing mental simulation to infer the emotion of others from their ambiguous signals. Our experimental results showed that the proposed model can extract features representing the distribution of categories of emotion via self-organized learning. Imitation experiments demonstrated that using our model, a robot can generate expressions better than with a direct mapping mechanism when the expressions of others contain emotional inconsistencies. Moreover, our model can improve the estimated belief in the emotional states of others through the generation of imaginary sensory signals from defective multimodal signals (i.e., mental simulation). These results suggest that these abilities of the proposed model can facilitate emotional human-robot communication in more complex situations.

Cite

CITATION STYLE

APA

Horii, T., Nagai, Y., & Asada, M. (2016). Imitation of human expressions based on emotion estimation by mental simulation. Paladyn, 7(1), 40–54. https://doi.org/10.1515/pjbr-2016-0004

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free