The major facilitator superfamily (MFS) effluxers are prominent mediators of antimicrobial resistance. The biochemical characterization of MFS proteins is hindered by their complex membrane environment that makes in vitro biochemical analysis challenging. Since the physicochemical properties of proteins drive the fitness of an organism, we posed the question of whether we could reverse that relationship and derive meaningful biochemical parameters for a single protein simply from fitness changes it confers under varying strengths of selection. Here, we present a physiological model that uses cellular fitness as a proxy to predict the biochemical properties of the MFS tetracycline efflux pump, TetB, and a family of single amino acid variants. We determined two lumped biochemical parameters roughly describing K(m) and V(max) for TetB and variants. Including in vivo protein levels into our model allowed for more specified prediction of pump parameters relating to substrate binding affinity and pumping efficiency for TetB and variants. We further demonstrated the general utility of our model by solely using fitness to assay a library of tet(B) variants and estimate their biochemical properties.
CITATION STYLE
Perez, A. M., Gomez, M. M., Kalvapalle, P., O’Brien‐Gilbert, E., Bennett, M. R., & Shamoo, Y. (2017). Using cellular fitness to map the structure and function of a major facilitator superfamily effluxer. Molecular Systems Biology, 13(12). https://doi.org/10.15252/msb.20177635
Mendeley helps you to discover research relevant for your work.