Bioinformatics analysis confirms the target protein underlying mitotic catastrophe of 4t1 cells under combinatorial treatment of pgv-1 and galangin

7Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Pentagamavunon-1 (PGV-1), a potential chemopreventive agent with a strong cytotoxic effect, modulates prometaphase arrest. Improvement to get higher effectiveness of PGV-1 is a new challenge. A previous study reported that the natural compound, galangin, has antiproliferative activity against cancer cells with a lower cytotoxicity effect. This study aims to develop a combinatorial treatment of PGV-1 and galangin as an anticancer agent with higher effectiveness than a single agent. In this study, 4T1, a TNBC model cell, was treated with a combination of PGV-1 and galangin. As a result, PGV-1 and galangin showed a cytotoxic effect with IC50 values of 8 and 120 µM, respectively. Combining those chemicals has a synergistic impact, as shown by the combination index (CI) value of 1. Staining with the May Grunwald-Giemsa reagent indicated mitotic catastrophe evidence, characterized by micronuclear and multinucleated morphology. Moreover, the senescence percentage was higher than the single treatment. Furthermore, bioinformatics investigations showed that PGV-1 and galangin target CDK1, PLK1, and AURKB, overexpression proteins in TNBC that are essential in regulating cell cycle arrest. In conclusion, the combination of PGV-1 and galangin exhibit a synergistic effect and potential to be a chemotherapeutic drug by the mechanism of mitotic catastrophe and senescence induction.

Cite

CITATION STYLE

APA

Hasbiyani, N. A. F., Wulandari, F., Nugroho, E. P., Hermawan, A., & Meiyanto, E. (2021). Bioinformatics analysis confirms the target protein underlying mitotic catastrophe of 4t1 cells under combinatorial treatment of pgv-1 and galangin. Scientia Pharmaceutica, 89(3). https://doi.org/10.3390/scipharm89030038

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free