Boosting-based ensemble machine learning models for predicting unconfined compressive strength of geopolymer stabilized clayey soil

11Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The present research employs new boosting-based ensemble machine learning models i.e., gradient boosting (GB) and adaptive boosting (AdaBoost) to predict the unconfined compressive strength (UCS) of geopolymer stabilized clayey soil. The GB and AdaBoost models were developed and validated using 270 clayey soil samples stabilized with geopolymer, with ground-granulated blast-furnace slag and fly ash as source materials and sodium hydroxide solution as alkali activator. The database was randomly divided into training (80%) and testing (20%) sets for model development and validation. Several performance metrics, including coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and mean squared error (MSE), were utilized to assess the accuracy and reliability of the developed models. The statistical results of this research showed that the GB and AdaBoost are reliable models based on the obtained values of R2 (= 0.980, 0.975), MAE (= 0.585, 0.655), RMSE (= 0.969, 1.088), and MSE (= 0.940, 1.185) for the testing dataset, respectively compared to the widely used artificial neural network, random forest, extreme gradient boosting, multivariable regression, and multi-gen genetic programming based models. Furthermore, the sensitivity analysis result shows that ground-granulated blast-furnace slag content was the key parameter affecting the UCS.

Cite

CITATION STYLE

APA

Abdullah, G. M. S., Ahmad, M., Babur, M., Badshah, M. U., Al-Mansob, R. A., Gamil, Y., & Fawad, M. (2024). Boosting-based ensemble machine learning models for predicting unconfined compressive strength of geopolymer stabilized clayey soil. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-52825-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free