The formation and destruction of molecular clouds and galactic star formation

1Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

We discuss an overall picture of star formation in the Galaxy. Recent high-resolution magneto-hydrodynamical simulations of two-fluid dynamics with cooling/heating and thermal conduction have shown that the formation of molecular clouds requires multiple episodes of supersonic compression. This finding enables us to create a new scenario of molecular cloud formation through interacting shells or bubbles on galactic scales. We estimate the ensemble-averaged growth rate of individual molecular clouds, and predict the associated cloud mass function. This picture naturally explains the accelerated star formation over many million years that was previously reported by stellar age determination in nearby star forming regions. The recent claim of cloud-cloud collisions as a mechanism for forming massive stars and star clusters can be naturally accommodated in this scenario. This explains why massive stars formed in cloud-cloud collisions follows the power-law slope of the mass function of molecular cloud cores repeatedly found in low-mass star forming regions.

Cite

CITATION STYLE

APA

Inutsuka, S. I., Inoue, T., Iwasaki, K., Hosokawa, T., & Kobayashi, M. I. N. (2015). The formation and destruction of molecular clouds and galactic star formation. In Proceedings of the International Astronomical Union (Vol. 11, pp. 61–68). Cambridge University Press. https://doi.org/10.1017/S1743921316007262

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free