Bacteria from the Pseudomonas syringae complex belonging to phylogroups 1 and 3 (PG1 and PG3, respectively) isolated from woody hosts share a genomic region herein referred to asWHOP (from woody host and Pseudomonas spp.), which is absent in strains infecting herbaceous organs. In this work, we show that this region is also encoded in P. syringae pv. actinidifoliorum (PG1) and six additional members of PG3, namely, Pseudomonas savastanoi pv. retacarpa, three P. syringae pathovars, Pseudomonas meliae, and Pseudomonas amygdali. Partial conservation of the WHOP occurs in only a few PG2 strains. In P. savastanoi pv. savastanoi NCPPB 3335, the WHOP region is organized into four operons and three independently transcribed genes. While the antABC and catBCA operons mediate the catabolism of anthranilate and catechol, respectively, the ipoABC operon confers oxygenase activity to aromatic compounds. The deletion of antABC, catBCA, or ipoABC in NCPPB 3335 caused reduced virulence in woody olive plants without affecting knot formation in nonwoody plants; catBCA, dhoAB, and PSA3335-3206 (encoding a putative aerotaxis receptor) were also required for the full fitness of this strain exclusively in woody olive plants. Overall, this study sheds light on the evolution and adaptation of bacteria from the P. syringae complex to woody hosts and highlights the enzymatic activities encoded within the WHOP region that are essential for this process.
CITATION STYLE
Caballo-Ponce, E., Van Dillewijn, P., Wittich, R. M., & Ramos, C. (2017). WHOP, a genomic region associated with woody hosts in the Pseudomonas syringae complex contributes to the virulence and fitness of Pseudomonas savastanoi pv. savastanoi in olive plants. Molecular Plant-Microbe Interactions, 30(2), 113–126. https://doi.org/10.1094/MPMI-11-16-0233-R
Mendeley helps you to discover research relevant for your work.