Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries

237Citations
Citations of this article
187Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Doping is a well-known strategy to enhance the electrochemical energy storage performance of layered cathode materials. Many studies on various dopants have been reported; however, a general relationship between the dopants and their effect on the stability of the positive electrode upon prolonged cell cycling has yet to be established. Here, we explore the impact of the oxidation states of various dopants (i.e., Mg2+, Al3+, Ti4+, Ta5+, and Mo6+) on the electrochemical, morphological, and structural properties of a Ni-rich cathode material (i.e., Li[Ni0.91Co0.09]O2). Galvanostatic cycling measurements in pouch-type Li-ion full cells show that cathodes featuring dopants with high oxidation states significantly outperform their undoped counterparts and the dopants with low oxidation states. In particular, Li-ion pouch cells with Ta5+- and Mo6+-doped Li[Ni0.91Co0.09]O2 cathodes retain about 81.5% of their initial specific capacity after 3000 cycles at 200 mA g−1. Furthermore, physicochemical measurements and analyses suggest substantial differences in the grain geometries and crystal lattice structures of the various cathode materials, which contribute to their widely different battery performances and correlate with the oxidation states of their dopants.

Cite

CITATION STYLE

APA

Sun, H. H., Kim, U. H., Park, J. H., Park, S. W., Seo, D. H., Heller, A., … Sun, Y. K. (2021). Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-26815-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free