The synthesis of alginate-capped silver nanoparticles under microwave irradiation

15Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

Synthesis of silver nanoparticles (Ag-NP) was successfully performed within a few minutes by microwave irradiation of the precursor salt (AgNO3) and alginate mixed solution in one pot. Herein, alginate molecules acted as both a reducing and stabilizing agent for the preparation of the silver nanoparticles. The obtained nanoparticles were characterized by ultraviolet-visible (UV-Vis) spectroscopy, particle size analysis (PSA), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The pH and concentration ratio of the alginate/metal precursor salt greatly influenced the particle size and its distribution of Ag-NP. The higher the pH the higher the nucleation rate and the larger the electrostatic stabilization, while both of them were responsible for producing a smaller particle size and a narrower size distribution. A higher concentration ratio also yielded a smaller particle size and a narrower size distribution, but above the optimum ratio, the trend was conversely changed due to the reducing capability of the alginate, which was dominant above the optimum ratio, thus creating a high density of nuclei, allowing aggregation to occur. A lower ratio not only led to a higher tendency to produce larger particles, but also a higher probability of anisotropic particle shape formation due to the lack of reducing capability of the alginates.

Cite

CITATION STYLE

APA

Foliatini, Yulizar, Y., & Hafizah, M. A. E. (2015). The synthesis of alginate-capped silver nanoparticles under microwave irradiation. Journal of Mathematical and Fundamental Sciences, 47(1), 31–50. https://doi.org/10.5614/j.math.fund.sci.2015.47.1.3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free