Performance based design of masonry infilled reinforced concrete frames for near-field earthquakes

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Performance Based Design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD design of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes. © 2012 WIT Press.

Cite

CITATION STYLE

APA

Madan, A., Das, D., & Hashmi, A. (2012). Performance based design of masonry infilled reinforced concrete frames for near-field earthquakes. In WIT Transactions on the Built Environment (Vol. 125, pp. 203–215). https://doi.org/10.2495/OP120181

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free