A Hybrid Trust-Based Recommender System for Online Communities of Practice

58Citations
Citations of this article
138Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The needs for life-long learning and the rapid development of information technologies promote the development of various types of online Community of Practices (CoPs). In online CoPs, bounded rationality and metacognition are two major issues, especially when learners face information overload and there is no knowledge authority within the learning environment. This study proposes a hybrid, trust-based recommender system to mitigate above learning issues in online CoPs. A case study was conducted using Stack Overflow data to test the recommender system. Important findings include: (1) comparing with other social community platforms, learners in online CoPs have stronger social relations and tend to interact with a smaller group of people only; (2) the hybrid algorithm can provide more accurate recommendations than celebrity-based and content-based algorithm and; (3) the proposed recommender system can facilitate the formation of personalized learning communities.

Cite

CITATION STYLE

APA

Zheng, X. L., Chen, C. C., Hung, J. L., He, W., Hong, F. X., & Lin, Z. (2015). A Hybrid Trust-Based Recommender System for Online Communities of Practice. IEEE Transactions on Learning Technologies, 8(4), 345–356. https://doi.org/10.1109/TLT.2015.2419262

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free