The current study highlights the rapid biosynthesis of gold nanoparticles (Gu–AuNps) and silver chloride nanoparticles (Gu–AgClNps) by aqueous root extract of Glycyrrhiza uralensis, a medicinal plant. G. uralensis has been reported for anticancer and hepatoprotective effects. The reduction of chloroauric acid and silver nitrate by the Glycyrrhiza root extract prompted the formation of Gu–AuNps and Gu–AgClNps within 4 and 40 min at 80 °C, respectively. The complete reaction did not require supplemental reducing and stabilizing agents, which demonstrated green synthesis. Field emission transmission electron microscopy (FE-TEM) revealed the spherical shape of Gu–AuNps and Gu–AgClNps. X-ray diffraction (XRD) showed face-centred cubic structure of Gu–AuNps and Gu–AgClNps with average crystallite size 12.25 nm and 8.01 nm, respectively. The biosynthesized Gu–AgClNps served as competent antimicrobial agent against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella enterica. Additionally, Gu–AuNps and Gu–AgClNps were analyzed for their catalytic ability to reduce methylene blue as model test pollutant. Likewise, both nanoparticles possessed free radical scavenging activity against 2,2-diphenyl-1-picrylhydrzyl (DPPH). Moreover, in vitro cytotoxicity in murine macrophage (RAW264.7) and human breast cancer (MCF7) cells were evaluated. Thus, the study proposes a green synthesis of Gu–AuNps and Gu–AgClNps by G. uralensis extract and in vitro biological applications. (Figure presented.).
CITATION STYLE
Huo, Y., Singh, P., Kim, Y. J., Soshnikova, V., Kang, J., Markus, J., … Yang, D. C. (2018). Biological synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and in vitro applications. Artificial Cells, Nanomedicine and Biotechnology, 46(2), 303–312. https://doi.org/10.1080/21691401.2017.1307213
Mendeley helps you to discover research relevant for your work.