The polycomb group (PcG) genes are epigenetic suppressors of gene expression that play an important role in development. In this study, we examine the role of Bmi-1 (B-cell-specific Moloney murine leukemia virus integration site 1) as a regulator of human epidermal keratinocyte survival. We identify Bmi-1 mRNA and protein expression in epidermis and in cultured human keratinocytes. Bmi-1 is located in the nucleus in cultured keratinocytes, and in epidermis it is expressed in the basal and suprabasal layers. Adenovirus-delivered Bmi-1 promotes keratinocyte survival and protects keratinocytes from stress agent-mediated cell death. This is associated with increased levels of cyclin D1 and selected cyclin-dependent kinases, and reduced caspase activity and poly(ADP-ribose) polymerase (PARP) cleavage. Bmi-1 may be involved in the maintenance of disease state, as Bmi-1 levels are elevated in transformed keratinocytes, skin tumors, and psoriasis. The presence of Bmi-1 in suprabasal non-proliferative cells of the epidermis and within a high percentage of cells within skin tumors suggests a non-stem cell pro-survival role for Bmi-1 in this tissue. Based on the suprabasal distribution of Bmi-1 in epidermis, we propose that Bmi-1 may promote maintenance of suprabasal keratinocyte survival to prevent premature death during differentiation. Such a function would help assure proper formation of the stratified epidermis. © 2007 The Society for Investigative Dermatology.
CITATION STYLE
Lee, K., Adhikary, G., Balasubramanian, S., Gopalakrishnan, R., McCormick, T., Dimri, G. P., … Rorke, E. A. (2008). Expression of Bmi-1 in epidermis enhances cell survival by altering cell cycle regulatory protein expression and inhibiting apoptosis. Journal of Investigative Dermatology, 128(1), 9–17. https://doi.org/10.1038/sj.jid.5700949
Mendeley helps you to discover research relevant for your work.