Separation of aldehydes and reactive ketones from mixtures using a bisulfite extraction protocol

11Citations
Citations of this article
84Readers
Mendeley users who have this article in their library.

Abstract

The purification of organic compounds is an essential component of routine synthetic operations. The ability to remove contaminants into an aqueous layer by generating a charged structure provides an opportunity to use extraction as a simple purification technique. By combining the use of a miscible organic solvent with saturated sodium bisulfite, aldehydes and reactive ketones can be successfully transformed into charged bisulfite adducts that can then be separated from other organic components of a mixture by the introduction of an immiscible organic layer. Here, we describe a simple protocol for the removal of aldehydes, including sterically-hindered neopentyl aldehydes and some ketones, from chemical mixtures. Ketones can be separated if they are sterically unhindered cyclic or methyl ketones. For aliphatic aldehydes and ketones, dimethylformamide is used as the miscible solvent to improve removal rates. The bisulfite addition reaction can be reversed by basification of the aqueous layer, allowing for the re-isolation of the reactive carbonyl component of a mixture.

Cite

CITATION STYLE

APA

Furigay, M. H., Boucher, M. M., Mizgier, N. A., & Brindle, C. S. (2018). Separation of aldehydes and reactive ketones from mixtures using a bisulfite extraction protocol. Journal of Visualized Experiments, 2018(134). https://doi.org/10.3791/57639

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free