MultiImport: Inferring Node Importance in a Knowledge Graph from Multiple Input Signals

19Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

Given multiple input signals, how can we infer node importance in a knowledge graph (KG)? Node importance estimation is a crucial and challenging task that can benefit a lot of applications including recommendation, search, and query disambiguation. A key challenge towards this goal is how to effectively use input from different sources. On the one hand, a KG is a rich source of information, with multiple types of nodes and edges. On the other hand, there are external input signals, such as the number of votes or pageviews, which can directly tell us about the importance of entities in a KG. While several methods have been developed to tackle this problem, their use of these external signals has been limited as they are not designed to consider multiple signals simultaneously. In this paper, we develop an end-to-end model MultiImport, which infers latent node importance from multiple, potentially overlapping, input signals. MultiImport is a latent variable model that captures the relation between node importance and input signals, and effectively learns from multiple signals with potential conflicts. Also, MultiImport provides an effective estimator based on attentive graph neural networks. We ran experiments on real-world KGs to show that MultiImport handles several challenges involved with inferring node importance from multiple input signals, and consistently outperforms existing methods, achieving up to 23.7% higher NDCG@100 than the state-of-the-art method.

Cite

CITATION STYLE

APA

Park, N., Kan, A., Dong, X. L., Zhao, T., & Faloutsos, C. (2020). MultiImport: Inferring Node Importance in a Knowledge Graph from Multiple Input Signals. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 503–512). Association for Computing Machinery. https://doi.org/10.1145/3394486.3403093

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free