Biological actions and therapeutic potential of the glucagon-like peptides

457Citations
Citations of this article
171Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The glucagon-like peptides (GLP-1 and GLP-2) are proglucagon-derived peptides cosecreted from gut endocrine cells in response to nutrient ingestion. GLP-1 acts as an incretin to lower blood glucose via stimulation of insulin secretion from islet β cells. GLP-1 also exerts actions independent of insulin secretion, including inhibition of gastric emptying and acid secretion, reduction in food ingestion and glucagon secretion, and stimulation of β-cell proliferation. Administration of GLP-1 lowers blood glucose and reduces food intake in human subjects with type 2 diabetes. GLP-2 promotes nutrient absorption via expansion of the mucosal epithelium by stimulation of crypt cell proliferation and inhibition of apoptosis in the small intestine. GLP-2 also reduces epithelial permeability, and decreases meal-stimulated gastric acid secretion and gastrointestinal motility. Administration of GLP-2 in the setting of experimental intestinal injury is associated with reduced epithelial damage, decreased bacterial infection, and decreased mortality or gut injury in rodents with chemically induced enteritis, vascular-ischemia reperfusion injury, and dextran sulfate-induced colitis. GLP-2 also attenuates chemotherapy-induced mucositis via inhibition of drug-induced apoptosis in the small and large bowel. GLP-2 improves intestinal adaptation and nutrient absorption in rats after major small bowel resection, and in humans with short bowel syndrome. The actions of GLP-2 are mediated by a distinct GLP-2 receptor expressed on subsets of enteric nerves and enteroendocrine cells in the stomach and small and large intestine. The beneficial actions of GLP-1 and GLP-2 in preclinical and clinical studies of diabetes and intestinal disease, respectively, has fostered interest in the potential therapeutic use of these gut peptides. Nevertheless, the actions of the glucagon-like peptides are limited in duration by enzymatic inactivation via cleavage at the N-terminal penultimate alanine by dipeptidyl peptidase IV (DP IV). Hence, inhibitors of DP IV activity, or DP IV-resistant glucagon-like peptide analogues, may be alternative therapeutic approaches for treatment of human diseases.

Cite

CITATION STYLE

APA

Drucker, D. J. (2002). Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology, 122(2), 531–544. https://doi.org/10.1053/gast.2002.31068

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free