Spectroscopic Ellipsometry Investigation of a Sensing Functional Interface: DNA SAMs Hybridization

12Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Here, a comprehensive study of a label-free detection platform for the recognition of oligonucleotide sequences based on hybridization of thiol-tethered DNA strands self-assembled on flat gold films is presented. The study exploits in-buffer spectroscopic ellipsometry (SE) measurements, a noninvasive method sensitive to monolayer films, supported by surface mass density change measurements (Quartz Crystal Microbalance with Dissipation, QCM-D) obtained under comparable experimental conditions. SE and QCM-D allow monitoring deposition of molecular precursors and DNA chain hybridization. Combining SE measurements with QCM-D data paves the way for quantification of the assay through the possible calibration of SE data. Optical measurements also demonstrate the selectivity and recovery properties of the sensing platform. Broadband SE measurements are interpreted by means of an effective optical model. The model, complemented by information on film thickness (scanning probe nanolithography), and surface composition (monochromatic X-ray Photoemission Spectroscopy, XPS), enables a clear spectral identification of UV DNA resonances and the formation of the thiolate interface with gold. Spectroscopic validation of the hybridization is complemented by employing labeled target strands. The influence of hybridization on UV resonances and optical thickness of the DNA film is discussed in the light of hypochromism, through comparison with QCM-D data.

Cite

CITATION STYLE

APA

Pinto, G., Dante, S., Rotondi, S. M. C., Canepa, P., Cavalleri, O., & Canepa, M. (2022). Spectroscopic Ellipsometry Investigation of a Sensing Functional Interface: DNA SAMs Hybridization. Advanced Materials Interfaces, 9(19). https://doi.org/10.1002/admi.202200364

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free