Transcriptional and physiological changes in the S assimilation pathway due to single or combined S and Fe deprivation in durum wheat (Triticum durum L.) seedlings

70Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The effect of iron (Fe) and sulphur (S) deprivation on sulphate uptake and assimilation pathways was investigated in durum wheat by analysing the expression of genes coding for major transporters and enzymes involved in sulphate assimilation and reduction: high-affinity sulphate transporters (TdSultr1.1 and TdSultr1.3), ATP sulphurylase (TdATPSul1 and TdATPSul2), APS reductase (TdAPR), sulphite reductase (TdSiR), O-acetylserine(thiol)lyase (TdOASTL1 and TdOASTL2), and serine acetyltransferase (TdSAT1 and TdSAT2). Further experiments were carried out to detect changes in the activities of these enzymes, together with the evaluation of growth parameters (fresh biomass accumulation, leaf green values, and total S, thiol, and Fe concentrations). Fe shortage in wheat plants under adequate S nutrition resulted in an S deficiency-like response. Most of the genes of the S assimilatory pathway induced by S deprivation (TdATPSul1, TdAPR, TdSir, TdSAT1, and TdSAT2) were also significantly up-regulated after the imposition of the Fe limitation under S-sufficient conditions. However, the differential expression of genes encoding the two high-affinity transporters (TdSultr1.1 and TdSultr1.3) indicates that the mechanisms of sulphate uptake regulation under Fe and S deficiency are different in wheat. Moreover, it was observed that the mRNA level of genes encoding ATPS, APR, and OASTL and the corresponding enzyme activities were often uncoupled in response to Fe and S availability, indicating that most probably their regulation involves a complex interplay of transcriptional, translational, and/or post-translational mechanisms induced by S and/or Fe deficiency. © 2013 The Authors.

Cite

CITATION STYLE

APA

Ciaffi, M., Paolacci, A. R., Celletti, S., Catarcione, G., Kopriva, S., & Astolfi, S. (2013). Transcriptional and physiological changes in the S assimilation pathway due to single or combined S and Fe deprivation in durum wheat (Triticum durum L.) seedlings. Journal of Experimental Botany, 64(6), 1663–1675. https://doi.org/10.1093/jxb/ert027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free