Abstract
Due to their broad applicability, gauge theories (GTs) play a crucial role in various areas of physics, from high-energy physics to condensed matter. Their formulations on lattices, lattice gauge theories (LGTs), can be studied, among many other methods, with tools coming from statistical mechanics lattice models, such as mean field methods, which are often used to provide approximate results. Applying these methods to LGTs requires particular attention due to the intrinsic local nature of gauge symmetry, how it is reflected in the variables used to formulate the theory, and the breaking of gauge invariance when approximations are introduced. This issue has been addressed over the decades in the literature, yielding different conclusions depending on the formulation of the theory under consideration. In this article, we focus on the mean field theoretical approach to the analysis of GTs and LGTs, connecting both older and more recent results that, to the best of our knowledge, have not been compared in a pedagogical manner. After a brief overview of mean field theory in statistical mechanics and many-body systems, we examine its application to pure LGTs with a generic compact gauge group. Finally, we review the existing literature on the subject, discussing the results obtained so far and their dependence on the formulation of the theory.
Author supplied keywords
Cite
CITATION STYLE
Fontana, P., & Trombettoni, A. (2025, March 1). Mean Field Approaches to Lattice Gauge Theories: A Review. Entropy. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/e27030250
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.