Reorganization of terminator DNA upon binding replication terminator protein: Implications for the functional replication fork arrest complex

14Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B. subtilis DNA terminator, TerI, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of TerI causes the DNA to become slightly unwound and bent by ~ 40°. Binding of a second dimer of RTP to the A site causes the bend angle to increase to ~ 60°. We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner. In the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry of the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.

Cite

CITATION STYLE

APA

Kralicek, A. V., Wilson, P. K., Ralston, G. B., Wake, R. G., & King, G. F. (1997). Reorganization of terminator DNA upon binding replication terminator protein: Implications for the functional replication fork arrest complex. Nucleic Acids Research, 25(3), 590–596. https://doi.org/10.1093/nar/25.3.590

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free