De novo production of the plant-derived alkaloid strictosidine in yeast

354Citations
Citations of this article
506Readers
Mendeley users who have this article in their library.

Abstract

The monoterpene indole alkaloids are a large group of plant-derived specialized metabolites, many of which have valuable pharmaceutical or biological activity. There are ∼3,000 monoterpene indole alkaloids produced by thousands of plant species in numerous families. The diverse chemical structures found in this metabolite class originate from strictosidine, which is the last common biosynthetic intermediate for all monoterpene indole alkaloid enzymatic pathways. Reconstitution of biosynthetic pathways in a heterologous host is a promising strategy for rapid and inexpensive production of complex molecules that are found in plants. Here, we demonstrate how strictosidine can be produced de novo in a Saccharomyces cerevisiae host from 14 known monoterpene indole alkaloid pathway genes, along with an additional seven genes and three gene deletions that enhance secondary metabolism. This system provides an important resource for developing the production of more complex plantderived alkaloids, engineering of nonnatural derivatives, identification of bottlenecks in monoterpene indole alkaloid biosynthesis, and discovery of new pathway genes in a convenient yeast host.

Cite

CITATION STYLE

APA

Brown, S., Clastre, M., Courdavault, V., & O’Connor, S. E. (2015). De novo production of the plant-derived alkaloid strictosidine in yeast. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3205–3210. https://doi.org/10.1073/pnas.1423555112

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free