Adenomyosis is a poorly understood gynecological disorder lacking effective treatments. Controversy persists regarding “invagination” and “metaplasia” theories. The endometrial-myometrial junction (EMJ) connects the endometrium and myometrium and is important for diagnosing and classifying adenomyosis, but its in-depth study is just beginning. Using single-cell RNA sequencing and spatial profiling, we mapped transcriptional alterations across eutopic endometrium, lesions, and EMJ. Within lesions, we identified unique epithelial (LGR5+) and invasive stromal (PKIB+) subpopulations, along with WFDC1+ progenitor cells, supporting a complex interplay between “invagination” and “metaplasia” theories of pathogenesis. Further, we observed endothelial cell heterogeneity and abnormal angiogenic signaling involving vascular endothelial growth factor and angiopoietin pathways. Cell-cell communication differed markedly between ectopic and eutopic endometrium, with aberrant signaling in lesions involving pleiotrophin, TWEAK, and WNT cascades. This study reveals unique stem cell-like and invasive cell subpopulations within adenomyosis lesions identified, dysfunctional signaling, and EMJ abnormalities critical to developing precise diagnostic and therapeutic strategies.
CITATION STYLE
Chen, T., Xu, Y., Xu, X., Wang, J., Qiu, Z., Yu, Y., … Che, X. (2024). Comprehensive transcriptional atlas of human adenomyosis deciphered by the integration of single-cell RNA-sequencing and spatial transcriptomics. Protein and Cell, 15(7), 530–546. https://doi.org/10.1093/procel/pwae012
Mendeley helps you to discover research relevant for your work.