Treatment of the ozone-sensitive tobacco (Nicotiana tabacum L. cv Bel W3) with an ozone pulse (150 nL L-1 for 5 h) induced visible injury, which manifested 48 to 72 h from onset of ozone fumigation. The "classical" ozone symptoms in tobacco cv Bel W3 plants occur as sharply defined, dot-like lesions on the adaxial side of the leaf and result from the death of groups of palisade cells. We investigated whether this reaction had the features of a hypersensitive response like that which results from the incompatible plant-pathogen interaction. We detected an oxidative burst, the result of H2O2 accumulation at 12 h from the starting of fumigation. Ozone treatment induced deposition of autofluorescent compounds and callose 24 h from the start of treatment. Total phenolic content was also strongly stimulated at the 10th and 72nd h from starting fumigation, concomitant with an enhancement in phenylalanine ammonia-lyase a and phenylalanine ammonia-lyase b expression, as evaluated by reverse transcriptase-polymerase chain reaction. There was also a marked, but transient, increase in the mRNA level of pathogenesis-related-1a, a typical hypersensitive response marker. Overall, these results are evidence that ozone triggers a hypersensitive response in tobacco cv Bel W3 plants. We adopted four criteria for detecting programmed cell death in ozonated tobacco cv Bel W3 leaves: (a) early release of cytochrome c from mitochondria; (b) activation of protease; (c) DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling of DNA 3′-OH groups; and (d) ultrastructural changes characteristic of programmed cell death, including chromatin condensation and blebbing of plasma membrane. We, therefore, provide evidence that ozone-induced oxidative stress triggers a cell death program in tobacco cv Bel W3.
CITATION STYLE
Pasqualini, S., Piccioni, C., Reale, L., Ederli, L., Della Torre, G. D., & Ferranti, F. (2003). Ozone-Induced Cell Death in Tobacco Cultivar Bel W3 Plants. The Role of Programmed Cell Death in Lesion Formation. Plant Physiology, 133(3), 1122–1134. https://doi.org/10.1104/pp.103.026591
Mendeley helps you to discover research relevant for your work.