First-Principles Modeling of Point Defects and Complexes in Thin-Film Solar-Cell Absorber CuInSe2

34Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Point defects and complexes may affect significantly physical, optical, and electrical properties of semiconductors. The Cu(In,Ga)Se2 alloy is an absorber material for low-cost thin-film solar cells. Several recently published computational investigations show contradicting results for important point defects such as copper antisite substituting indium (CuIn), indium vacancy (VIn), and complexes of point defects in CuInSe2. In the present work effects of the most important computational parameters are studied especially on the formation energies of point defects. Moreover, related to defect identification by the help of their calculated properties possible explanations are discussed for the three acceptors, occuring in photoluminescence measurements of Cu-rich samples. Finally, new insight into comparison between theoretical and experimental results is presented in the case of varying chemical potentials and of formation of secondary phases.

Cite

CITATION STYLE

APA

Malitckaya, M., Komsa, H. P., Havu, V., & Puska, M. J. (2017). First-Principles Modeling of Point Defects and Complexes in Thin-Film Solar-Cell Absorber CuInSe2. Advanced Electronic Materials, 3(6). https://doi.org/10.1002/aelm.201600353

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free