Ectopic expression of Msx2 in chick retinal pigmented epithelium cultures suggests a role in patterning the optic vesicle

13Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

During the initial stages of vertebrate retinogenesis, cells of the optic vesicle adopt one of two alternate cell fates. Cells in the distal-most part of the vesicle, immediately beneath the surface ectoderm, undergo neural differentiation; cells in the proximal part differentiate into retinal pigmented epithelial cells. The mechanisms that establish this pattern of differentiation are poorly understood. In the mouse embryo, Msx2, a homeobox- containing transcription factor, is expressed in cells of the optic vesicle that will form the neural retina, whilst the developing retinal pigmented epithelium (RPE) does not express this gene. Msx2 could therefore be involved in patterning the optic vesicle into neural and pigmented domains. To explore this possibility we ectopically expressed mouse Msx2 in cultures of chick RPE cells. Compared with cultures transfected with a control construct, Msx2- transfected cultures contained fewer cells expressing the RPE marker, Mitf, and more cells expressing class III β-tubulin, a neuronal marker. In addition a small proportion of Msx2-transfected cells acquired a neural-like morphology. These results show that Msx2 can suppress the differentiated state of RPE cells and promote their differentiation into neural cell types. We suggest that Msx2 may pattern the optic vesicle into neural and pigmented domains by affecting the balance between RPE and neural retina differentiation. (C) 2000 Elsevier Science Ireland Ltd.

Cite

CITATION STYLE

APA

Holme, R. H., Thomson, S. J., & Davidson, D. R. (2000). Ectopic expression of Msx2 in chick retinal pigmented epithelium cultures suggests a role in patterning the optic vesicle. Mechanisms of Development, 91(1–2), 175–187. https://doi.org/10.1016/S0925-4773(99)00296-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free