Phosphor-converted white light-emitting diodes (pc-WLEDs) are excellent energy-efficient light sources for artificial lighting applications. One goal of artificial lighting is to make objects/images look natural – as they look under the sunlight. The ability of a light source to accurately render the natural color of an object is gauged by the parameter – color rendering index (CRI). A conventional pc-WLED has an average CRI ~ 80, which is very low for accurate color reproduction. To utilize the pc-WLEDs for artificial lighting applications, all the CRI points (R1 – R15) should be above 95. However, there is a trade-off between CRI and luminous efficacy (LER), and it is challenging to increase both CRI and LER. Herein we propose a novel LED package (PKG) design to achieve CRI points ≥95 and efficiency ~100 lm/W by introducing two blue LEDs and a UV LED in combination with green and red phosphors. The silicone encapsulant, the current through the LEDs, and the green/red phosphor ratio were optimized for achieving high CRI and LER. Our re-designed LED PKG will find applications in stadium lighting as well as for ultra-high-definition television production where high CRI points are required for the artificial light source.
CITATION STYLE
Ahn, Y. N., Kim, K. D., Anoop, G., Kim, G. S., & Yoo, J. S. (2019). Design of highly efficient phosphor-converted white light-emitting diodes with color rendering indices (R 1 − R 15) ≥ 95 for artificial lighting. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-53269-0
Mendeley helps you to discover research relevant for your work.