Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cells

66Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Microglial activation plays an important role in neuroinflammation, which contributes to neuronal damage, and inhibition of microglial activation may have therapeutic benefits that could alleviate the progression of neurodegeneration. Recent studies have indicated that the antimalarial agent artemisinin has the ability to inhibit NF-κB activation. In this study, the inhibitory effects of artemisinin on the production of proinflammatory mediators were investigated in lipopolysaccharide (LPS)-stimulated primary microglia. Our results show that artemisinin significantly inhibited LPS-induced production of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), monocyte chemotactic protein-1 (MCP-1) and nitric oxide (NO). Artemisinin significantly decreased both the mRNA and the protein levels of these pro-inflammatory cytokines and inducible nitric oxide synthase (iNOS) and increased the protein levels of IκB-α, which forms a cytoplasmic inactive complex with the p65-p50 heterodimeric complex. Artemisinin treatment significantly inhibited basal and LPS-induced migration of BV-2 microglia. Electrophoretic mobility shift assays revealed increased NF-κB binding activity in LPS-stimulated primary microglia, and this increase could be prevented by artemisinin. The inhibitory effects of artemisinin on LPS-stimulated microglia were blocked after IκB-α was silenced with IκB-α siRNA. Our results suggest that artemisinin is able to inhibit neuroinflammation by interfering with NF-κB signaling. The data provide direct evidence of the potential application of artemisinin for the treatment of neuroinflammatory diseases. © 2012 Zhu et al.

Cite

CITATION STYLE

APA

Zhu, C., Xiong, Z., Chen, X., Peng, F., Hu, X., Chen, Y., & Wang, Q. (2012). Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-κB pathway in microglia cells. PLoS ONE, 7(4). https://doi.org/10.1371/journal.pone.0035125

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free