Nowadays, the increased agro-industrial activities and the inability of traditional wastewater treatment plants (WWTPs) to eliminate recalcitrant organic contaminants are raising a potential worldwide risk for the environment. Among the various advanced water treatment technologies that are lately proposed for addressing this challenge, the development and optimization of an innovative hybrid photocatalytic nanofiltration reactor (PNFR) prototype emerges as a prominent solution that achieves synergistic beneficial effects between the photocatalytic degradation activity and size exclusion capacity for micropollutant molecules. Both these features can be contemporarily endued to a multitude of membrane monoliths. The physicochemical and the photoinduced decontamination properties of the titania materials were firstly determined in the powder form, and subsequently, the structural and morphological characterization of the obtained titania-modified membrane monoliths were accomplished. The PNFR unit can operate at high water recovery and low pressures, exhibiting promising removal efficiencies against Acetamiprid (ACT) and Thiabendazole (TBZ) pesticides and achieving the recycling of 15 m3/day of real agro-wastewater. The obtained results are very encouraging, demonstrating the integration of titania photocatalysts in a photocatalytic membrane reactor as a feasible technological solution for the purification of agricultural wastewater.
CITATION STYLE
Theodorakopoulos, G. V., Arfanis, M. K., Sánchez Pérez, J. A., Agüera, A., Cadena Aponte, F. X., Markellou, E., … Falaras, P. (2023). Novel Pilot-Scale Photocatalytic Nanofiltration Reactor for Agricultural Wastewater Treatment. Membranes, 13(2). https://doi.org/10.3390/membranes13020202
Mendeley helps you to discover research relevant for your work.