Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy

131Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

To study the effect of troponin (Tn) T mutations that cause familial hypertrophic cardiomyopathy (FHC) on cardiac muscle contraction, wild-type, and the following recombinant human cardiac TnT mutants were cloned and expressed: I79N, R92Q, F110I, E163K, R278C, and intron 16(G1 → A) (In16). These TnT FHC mutants were reconstituted into skinned cardiac muscle preparations and characterized for their effect on maximal steady state force activation, inhibition, and the Ca2+ sensitivity of force development. Troponin complexes containing these mutants were tested for their ability to regulate actin-tropomyosin(Tm)-activated myosin-ATPase activity. TnT(R278C) and TnT(F110I) reconstituted preparations demonstrated dramatically increased Ca2+ sensitivity of force development, while those with TnT(R92Q) and TnT(I79N) showed a moderate increase. The deletion mutant, TnT(In16), significantly decreased both the activation and the inhibition of force, and substantially decreased the activation and the inhibition of actin-Tm- activated myosin-ATPase activity. ATPase activation was also impaired by TnT(F110I), while its inhibition was reduced by TnT(R278C). The TnT(E163K) mutation had the smallest effect on the Ca2+ sensitivity of force; however, it produced an elevated activation of the ATPase activity in reconstituted thin filaments. These observed changes in the Ca2+ regulation of force development caused by these mutations would likely cause altered contractility and contribute to the development of FHC.

Cite

CITATION STYLE

APA

Szczesna, D., Zhang, R., Zhao, J., Jones, M., Guzman, G., & Potter, J. D. (2000). Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. Journal of Biological Chemistry, 275(1), 624–630. https://doi.org/10.1074/jbc.275.1.624

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free