This paper presents a comprehensive review of the thermal management strategies employed in cylindrical lithium-ion battery packs, with a focus on enhancing performance, safety, and lifespan. Effective thermal management is critical to retain battery cycle life and mitigate safety issues such as thermal runaway. This review covers four major thermal management techniques: air cooling, liquid cooling, phase-change materials (PCM), and hybrid methods. Air-cooling strategies are analyzed for their simplicity and cost-effectiveness, while liquid-cooling systems are explored for their superior heat dissipation capabilities. Phase-change materials, with their latent heat absorption and release properties, are evaluated as potential passive cooling solutions. Additionally, hybrid methods, such as combining two or more strategies, are discussed for their synergistic effects in achieving optimal thermal management. Each strategy is assessed in terms of its thermal performance, energy efficiency, cost implications, and applicability to cylindrical lithium-ion battery packs. The paper provides valuable insights into the strengths and limitations of each technique, offering a comprehensive guide for researchers, engineers, and policymakers in the field of energy storage. The findings contribute to the ongoing efforts to develop efficient and sustainable thermal management solutions for cylindrical lithium-ion battery packs in various applications.
CITATION STYLE
Ahmadian-Elmi, M., & Zhao, P. (2024, February 1). Review of Thermal Management Strategies for Cylindrical Lithium-Ion Battery Packs. Batteries. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/batteries10020050
Mendeley helps you to discover research relevant for your work.