Deep learning techniques for the localization and classification of liquid crystal phase transitions

  • Dierking I
  • Dominguez J
  • Harbon J
  • et al.
N/ACitations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Deep Learning techniques such as supervised learning with convolutional neural networks and inception models were applied to phase transitions of liquid crystals to identify transition temperatures and the respective phases involved. In this context achiral as well as chiral systems were studied involving the isotropic liquid, the nematic phase of solely orientational order, fluid smectic phases with one-dimensional positional order and hexatic phases with local two-dimensional positional, so-called bond-orientational order. Discontinuous phase transition of 1st order as well as continuous 2nd order transitions were investigated. It is demonstrated that simpler transitions, namely Iso-N, Iso-N*, and N-SmA can accurately be identified for all unseen test movies studied. For more subtle transitions, such as SmA*-SmC*, SmC*-SmI*, and SmI*-SmF*, proof-of-principle evidence is provided, demonstrating the capability of deep learning techniques to identify even those transitions, despite some incorrectly characterized test movies. Overall, we demonstrate that with the provision of a substantial and varied dataset of textures there is no principal reason why one could not develop generalizable deep learning techniques to automate the identification of liquid crystal phase sequences of novel compounds.

Cite

CITATION STYLE

APA

Dierking, I., Dominguez, J., Harbon, J., & Heaton, J. (2023). Deep learning techniques for the localization and classification of liquid crystal phase transitions. Frontiers in Soft Matter, 3. https://doi.org/10.3389/frsfm.2023.1114551

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free