Collecting duct (CD) renin is stimulated by angiotensin (Ang) II, providing a pathway for Ang I generation and further conversion to Ang II. Ang II stimulates the epithelial sodium channel via the Ang II type 1 receptor and increases mineralocorticoid receptor activity attributed to increased aldosterone release. Our objective was to determine whether CD renin augmentation is mediated directly by Ang II type 1 receptor or via the epithelial sodium channel and mineralocorticoid receptor. In vivo studies examined the effects of epithelial sodium channel blockade (amiloride; 5 mg/kg per day) on CD renin expression and urinary renin content in Ang II-infused rats (80 ng/min, 2 weeks). Ang II infusion increased systolic blood pressure, medullary renin mRNA, urinary renin content, and intrarenal Ang II levels. Amiloride cotreatment did not alter these responses despite a reduction in the rate of progression of systolic blood pressure. In primary cultures of inner medullary CD cells, renin mRNA and (pro)renin protein levels increased with Ang II (100 nmol/L), and candesartan (Ang II type 1 receptor antagonist) prevented this effect. Aldosterone (10 to 10 mol/L) with or without amiloride did not modify the upregulation of renin mRNA in Ang II-treated cells. However, inhibition of protein kinase C with calphostin C prevented the Ang II-mediated increases in renin mRNA and (pro)renin protein levels. Furthermore, protein kinase C activation with phorbol 12-myristate 13-acetate increased renin expression to the same extent as Ang II. These data indicate that an Ang II type 1 receptor-mediated increase in CD renin is induced directly by Ang II via the protein kinase C pathway and that this regulation is independent of mineralocorticoid receptor activation or epithelial sodium channel activity. © 2011 American Heart Association, Inc.
CITATION STYLE
Gonzalez, A. A., Liu, L., Lara, L. S., Seth, D. M., Navar, L. G., & Prieto, M. C. (2011). Angiotensin II stimulates renin in inner medullary collecting duct cells via protein kinase C and independent of epithelial sodium channel and mineralocorticoid receptor activity. Hypertension, 57(3 PART 2), 594–599. https://doi.org/10.1161/HYPERTENSIONAHA.110.165902
Mendeley helps you to discover research relevant for your work.