With the aim of establishing adequate time intervals for maintenance of offshore structures, an approach based on multiobjective optimization for making decisions is proposed. The formulation takes into account the degradation of the mechanical properties of the structures and its influence over time on both the structural capacity and the structural demand, given a maximum wave height. The set of time intervals for maintenance corresponds to a balance between three objectives: (a) structural reliability, (b) damage index, and (c) expected cumulative total cost. Structural reliability is expressed in terms of confidence factors as functions of time by means of closed-form mathematical expressions which consider structural deterioration. The multiobjective optimization is solved using an evolutionary genetic algorithm. The approach is applied to an offshore platform located at Campeche Bay in the Gulf of Mexico. The optimization criterion includes the reconstruction of the platform. Results indicate that if the first maintenance action is made in 5 years after installing the structure, the second repair action should be made in the following 7 to 10 years; however, if the first maintenance action is made in 6 years after installing the structure, then the second should be made in the following 5 to 8 years. © 2013 Dante Tolentino and Sonia E. Ruiz.
CITATION STYLE
Tolentino, D., & Ruiz, S. E. (2013). Time intervals for maintenance of offshore structures based on multiobjective optimization. Mathematical Problems in Engineering, 2013. https://doi.org/10.1155/2013/125856
Mendeley helps you to discover research relevant for your work.