Forecasting Call Center Arrivals Using Machine Learning

  • BALLOUCH M
  • AKAY F
  • ERDEM S
  • et al.
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

A call center is an office equipped to handle a large volume of telephone calls for an organization, for which the ability to forecast calls is a key factor. By forecasting the number of calls accurately, a company can plan staffing needs, meet service level requirements, improve customer satisfaction and benefit from many other optimizations. In this paper, we develop Multilayer Perceptron (MLP) and Long-Short Term Memory (LSTM) based models combined with time lags to forecast the number of call arrivals in a call center. We forecast 12, 24, 36 and 48 values ahead and the performance of the forecasting models has been evaluated using the Mean Absolute Error (MAE). The MLP based model results show that the MAE values change between 1,50 and 13,58 and LSTM based model results show that the MAE values change between 19,99 and 66,74.Çağrı merkezi, bir kuruluş için çok sayıda telefon görüşmesini idare edebilecek şekilde donatılmış bir ofistir ve aramaları tahmin etme yeteneği kilit bir faktördür. Bir şirket, arama sayısını doğru bir şekilde tahmin ederek personel ihtiyaçlarını planlayabilir, hizmet seviyesi gereksinimlerini karşılayabilir, müşteri memnuniyetini artırabilir ve diğer birçok optimizasyondan yararlanabilir. Bu çalışmada, bir çağrı merkezindeki gelen çağrı sayısını tahmin etmek için zaman gecikmeleri ile entegreli Çok Katmanlı Algılayıcı (Multilayer Perceptron - MLP) ve Uzun Kısa Vadeli Bellek (Long-Short Term Memory – LSTM) tabanlı modeller geliştirilmiştir. 12, 24, 36 ve 48’lik tahminler üretilip, tahmin modellerinin performansı Ortalama Mutlak Hata (Mean Absolute Error - MAE) kullanılarak değerlendirilmiştir. Sonuçlar, MLP tabanlı modellerin MAE değerlerinin 1,50 ile 13,58 arasında, LSTM tabanlı modellerin ise 19,99 ile 66,74 arasında değiştiğini göstermektedir.

Cite

CITATION STYLE

APA

BALLOUCH, M., AKAY, F., ERDEM, S., TARTUK, M., NURDAĞ, T. F., & YURDAGÜL, H. H. (2021). Forecasting Call Center Arrivals Using Machine Learning. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 4(1), 96–101. https://doi.org/10.47495/okufbed.824870

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free