Evaluation of the Sensitivity of Breast Cancer Cell Lines to Cardiac Glycosides Unveils ATP1B3 as a Possible Biomarker for the Personalized Treatment of ERα Expressing Breast Cancers

2Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The molecular classification of breast cancer (BC) dictates pharmacological treatment. Estrogen receptor α (ERα) expressing tumors are treated with 4OH-tamoxifen or fulvestrant, which inhibits the receptor, or with aromatase inhibitors (i.e., anastrozole, letrozole, and exemestane) that reduce the 17β-estradiol (E2) circulating blood levels. Besides such endocrine therapy (ET) drugs, ERα-positive BCs can be treated with epidermal growth factor receptor (EGF-R) inhibitors (i.e., gefitinib, erlotinib, and lapatinib) according to HER2 expression. Notwithstanding these anti-BC drugs, novel personalized approaches for BC treatment are required because prolonged administration of those pharmaceutics determines resistant phenotypes, which result in metastatic BC. We have recently reported that the cardiac glycoside (CG) (i.e., Na/K ATPase inhibitor) ouabain could be repurposed for ERα-positive primary and metastatic BC treatment as it induces ERα degradation and kills BC cells. Here, we evaluated if other CGs could represent additional treatment options for ERα-positive BCs and if the Na/K ATPase could be considered a biomarker for ERα-positive BC treatment. The results indicate that the ATP1B3 Na/K ATPase isoform can educate the choice for the personalized treatment of ERα-positive BC with CGs and that CGs could be more efficacious if they are administered in association with gefitinib.

Cite

CITATION STYLE

APA

Acconcia, F. (2022). Evaluation of the Sensitivity of Breast Cancer Cell Lines to Cardiac Glycosides Unveils ATP1B3 as a Possible Biomarker for the Personalized Treatment of ERα Expressing Breast Cancers. International Journal of Molecular Sciences, 23(19). https://doi.org/10.3390/ijms231911102

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free