On optimizing discrete Morse functions

Citations of this article
Mendeley users who have this article in their library.


In 1998, Forman introduced discrete Morse theory as a tool for studying CW complexes by producing smaller, simpler-to-understand complexes of critical cells with the same homotopy types as the original complexes. This paper addresses two questions: (1) under what conditions may several gradient paths in a discrete Morse function simultaneously be reversed to cancel several pairs of critical cells, to further collapse the complex, and (2) which gradient paths are individually reversible in lexicographic discrete Morse functions on poset order complexes. The latter follows from a correspondence between gradient paths and lexicographically first reduced expressions for permutations. As an application, a new partial order on the symmetric group recently introduced by Remmel is proven to be Cohen-Macaulay. © 2005 Elsevier Inc. All rights reserved.




Hersh, P. (2005). On optimizing discrete Morse functions. Advances in Applied Mathematics, 35(3), 294–322. https://doi.org/10.1016/j.aam.2005.04.001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free