Dietary Pattern Extraction Using Natural Language Processing Techniques

3Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

In this study, we observed the changes in dietary patterns among Korean adults in the previous decade. We evaluated dietary intake using 24-h recall data from the fourth (2007–2009) and seventh (2016–2018) Korea National Health and Nutrition Examination Survey. Machine learning-based methodologies were used to extract these dietary patterns. Particularly, we observed three dietary patterns from each survey similar to the traditional and Western dietary patterns in 2007–2009 and 2016–2018, respectively. Our results reveal a considerable increase in the number of Western dietary patterns compared with the previous decade. Thus, our study contributes to the use of novel methods using natural language processing (NLP) techniques for dietary pattern extraction to obtain more useful dietary information, unlike the traditional methodology.

Cite

CITATION STYLE

APA

Choi, I., Kim, J., & Kim, W. C. (2022). Dietary Pattern Extraction Using Natural Language Processing Techniques. Frontiers in Nutrition, 9. https://doi.org/10.3389/fnut.2022.765794

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free