Oxygen isotope enrichment (Δ18O) as a measure of time-averaged transpiration rate

87Citations
Citations of this article
149Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Experimental evidence is presented to show that the 18O enrichment in the leaf biomass and the mean (time-averaged) transpiration rate are positively correlated in groundnut and rice genotypes. The relationship between oxygen isotope enrichment and stomatal conductance (gs) was determined by altering gs through ABA and subsequently using contrasting genotypes of cowpea and groundnut. The Peclet model for the 18O enrichment of leaf water relative to the source water is able to predict the mean observed values well, while it cannot reproduce the full range of measured isotopic values. Further, it fails to explain the observed positive correlation between transpiration rate and 18O enrichment in leaf biomass. Transpiration rate is influenced by the prevailing environmental conditions besides the intrinsic genetic variability. As all the genotypes of both species experienced similar environmental conditions, the differences in transpiration rate could mostly be dependent on intrinsic gs. Therefore, it appears that the Δ18O of leaf biomass can be used as an effective surrogate for mean transpiration rate. Further, at a given vapour pressure difference, Δ18O can serve as a measure of stomatal conductance as well. © The Author [2005]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

Cite

CITATION STYLE

APA

Sheshshayee, M. S., Bindumadhava, H., Ramesh, R., Prasad, T. G., Lakshminarayana, M. R., & Udayakumar, M. (2005). Oxygen isotope enrichment (Δ18O) as a measure of time-averaged transpiration rate. Journal of Experimental Botany, 56(422), 3033–3039. https://doi.org/10.1093/jxb/eri300

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free