Using Paired In Situ High Frequency Nitrate Measurements to Better Understand Controls on Nitrate Concentrations and Estimate Nitrification Rates in a Wastewater-Impacted River

12Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We used paired continuous nitrate (NO3-) measurements along a tidally affected river receiving wastewater discharge rich in ammonium (NH4+) to quantify rates of change in (NO3-) concentration (R∆NO3) and estimate nitrification rates. (NO3-) sensors were deployed 30 km apart in the Sacramento River, California (USA), with the upstream station located immediately above the regional wastewater treatment plant (WWTP). We used a travel time model to track water transit between the stations and estimated (R∆NO3) every 15 min (October 2013 to September 2014). Changes in (NO3-) concentration were strongly related to water temperature. In the presence of wastewater, (R∆NO3) was generally positive, ranging from about 7 µM d−1 in the summer to near zero in the winter. Numerous periods when the WWTP halted discharge allowed the (R∆NO3) to be estimated under no-effluent conditions and revealed that in the absence of effluent, net gains in (NO3-) were substantially lower but still positive in the summer and negative (net sink) in the winter. Nitrification rates of effluent-derived NH4 (RNitrific_E) were estimated from the difference between (R∆NO3) measured in the presence versus absence of effluent and ranged from 1.5 to 3.4 µM d−1, which is within literature values but tenfold greater than recently reported for this region. (RNitrific_E) was generally lower in winter (∼2 µM d−1) than summer (∼3 µM d−1). This in situ, high frequency approach provides advantages over traditional discrete sampling, incubation, and tracer methods and allows measurements to be made over broad areas for extended periods of time. Incorporating this approach into environmental monitoring programs can facilitate our ability to protect and manage aquatic systems.

Cite

CITATION STYLE

APA

Kraus, T. E. C., O’Donnell, K., Downing, B. D., Burau, J. R., & Bergamaschi, B. A. (2017). Using Paired In Situ High Frequency Nitrate Measurements to Better Understand Controls on Nitrate Concentrations and Estimate Nitrification Rates in a Wastewater-Impacted River. Water Resources Research, 53(10), 8423–8442. https://doi.org/10.1002/2017WR020670

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free