Space-for-time substitution works in everglades ecological forecasting models

11Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

Space-for-time substitution is often used in predictive models because long-term time-series data are not available. Critics of this method suggest factors other than the target driver may affect ecosystem response and could vary spatially, producing misleading results. Monitoring data from the Florida Everglades were used to test whether spatial data can be substituted for temporal data in forecasting models. Spatial models that predicted bluefin killifish (Lucania goodei) population response to a drying event performed comparably and sometimes better than temporal models. Models worked best when results were not extrapolated beyond the range of variation encompassed by the original dataset. These results were compared to other studies to determine whether ecosystem features influence whether space-for-time substitution is feasible. Taken in the context of other studies, these results suggest space-fortime substitution may work best in ecosystems with low beta-diversity, high connectivity between sites, and small lag in organismal response to the driver variable. © 2013 Banet, Trexler.

Cite

CITATION STYLE

APA

Banet, A. I., & Trexler, J. C. (2013). Space-for-time substitution works in everglades ecological forecasting models. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0081025

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free