Phytoremediation Potential and Physiological Mechanisms Underlying Metallic Extraction of Suaeda glauca, Artemisia desertorum, and Atriplex canescens

2Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Mining activities have led to serious environmental (soil erosion, degradation of vegetation, and groundwater contamination) and human health (musculoskeletal problems, diarrheal conditions, and chronic diseases) issues at desert mining areas in northwest China. Native plant species grown naturally in desert regions show a unique tolerance to arid and semiarid conditions and are potential candidates for soil phytoremediation. Here, an ex situ experiment involving pot planting of seedlings of three native plant species (Suaeda glauca, Artemisia desertorum, and Atriplex canescens) was designed to explore their phytoremediation potential and the underlying physiological mechanism. For Zn and Cu, the three plants were all with a biological accumulation coefficient (BAC) greater than 1. For Cd, Ni, and Pb, Atriplex canescens had the highest bioaccumulation concentrations (521.52, 862.23, and 1734.59 mg/kg), with BAC values (1.06, 1.30, 1.25) greater than 1, which indicates that Atriplex canescens could be a broad-spectrum metal extraction plant. Physiological analysis (antioxidation, extracellular secretions, photosynthesis, and hydraulics) showed that the three desert plants exploited their unique strategy to protect against the stress of complex metals in soils. Moreover, the second growing period was the main heavy metal accumulation and extraction stage concomitant with highest water use efficiency (iWUE). Taken together, the three desert plants exhibited the potent heavy metal extraction ability and physiological and ecological adaptability to a harsh polluted environment in arid desert areas, providing potential resources for the bioremediation of metal-contaminated soils in an arid and semiarid desert environment.

Cite

CITATION STYLE

APA

Li, C., Gao, T., Wang, X., Qu, S., Yang, Y., Zuo, M., … Liu, Y. (2022). Phytoremediation Potential and Physiological Mechanisms Underlying Metallic Extraction of Suaeda glauca, Artemisia desertorum, and Atriplex canescens. International Journal of Environmental Research and Public Health, 19(23). https://doi.org/10.3390/ijerph192316035

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free